Transport in Transitory, Three-Dimensional, Liouville Flows

نویسندگان

  • Brock A. Mosovsky
  • James D. Meiss
چکیده

We derive an action-flux formula to compute the volumes of lobes quantifying transport between pastand future-invariant regions of n-dimensional, transitory, globally Liouville flows. A transitory system is one that is nonautonomous only on a compact time interval. This method requires relatively little Lagrangian information about the codimension-one surfaces bounding the lobes, relying only on the generalized actions of loops on the lobe boundaries. These are easily computed since the vector fields are autonomous before and after the time-dependent transition. Two examples in three dimensions are studied: a transitory ABC flow and a model of a microdroplet moving through a microfluidic channel mixer. In both cases the action-flux computations of transport are compared to those obtained using Monte Carlo methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional characteristic approach for incompressible thermo-flows and influence of artificial compressibility parameter

In this paper the characteristics of unsteady three-dimensional incompressible flows with heat transfer are obtained along with artificial compressibility of Chorin. At first, compatibility equations and pseudo characteristics for three-dimensional flows are derived from five governing equations (continuity equation, Momentum equations in three directions, and energy equation) and then results ...

متن کامل

On nonexistence for stationary solutions to the Navier-Stokes equations with a linear strain

We consider stationary solutions to the three-dimensional Navier-Stokes equations for viscous incompressible flows in the presence of a linear strain. For certain class of strains we prove a Liouville type theorem under suitable decay conditions on vorticity fields.

متن کامل

Binary Bargmann Symmetry Constraints of Soliton Equations

Binary Bargmann symmetry constraints are applied to decompose soliton equations into finite-dimensional Liouville integrable Hamiltonian systems, generated from so-called constrained flows. The resulting constraints on the potentials of soliton equations give rise to involutive solutions to soliton equations, and thus the integrability by quadratures are shown for soliton equations by the const...

متن کامل

Implementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems

In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...

متن کامل

Three-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell

In this article three dimensional modeling of a planar solid oxide fuel cell (SOFC) was investigated. The main objective was to attain the optimized cell operation. SOFC operation simulation involves a large number of parameters,   complicated equations, (mostly partial differential equations), and a sophisticated simulation technique; hence, a finite element method (FEM) multiphysics approach ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Applied Dynamical Systems

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2012